બુલિયન સમીકરણ $x \leftrightarrow \sim y$ નું નિષેધ વિધાન .......... ને સમતુલ્ય છે
$(\sim x \wedge y) \vee(\sim x \wedge \sim y)$
$(x \wedge \sim y) \vee(\sim x \wedge y)$
$(x \wedge y) \vee(\sim x \wedge \sim y)$
$(x \wedge y) \wedge(\sim x \vee \sim y)$
“જો તમારો જન્મ ભારતમાં થયો હોય તો તમે ભારતના નાગરિક છો” આ વિધાનનું સામાનર્થી પ્રેરણ ............. થાય
નીચેના વિધાનો ધ્યાનમાં લો. :
$P$ : સુમન હોશિયાર છે
$Q$ : સુમન અમીર છે
$R$ : સુમન પ્રમાણિક છે
"સુમન હોશિયાર અને અપ્રમાણિક હોય તો અને તો જ તે અમીર હોય" આ વિધાનના નિષેધને નીચેનામાંથી ............. રીતે રજૂ કરી શકાય.
વિધાન $[(p \wedge q) \rightarrow p] \rightarrow (q \wedge \sim q)$ એ ......... છે
જો બુલિયન બહુપદી $( p \wedge q ) \circledast( p \otimes q )$ એ સંપૂર્ણ સત્ય છે તો $\circledast$ અને $\otimes$ એ . . . દર્શાવે છે .
નીચેનામાથી ક્યૂ હમેશા સાચું છે ?